10-band Batch Processing Example

In this example, we use the micasense.imageset class to load a set of directories of images into a list of micasense.capture objects, and we iterate over that list saving out each image as an aligned stack of images as separate bands in a single tiff file each. Next, we use the metadata from the original captures to write out a log file of the captures and their locations. Finally, we use exiftool from the command line to inject that metadata into the processed images, allowing us to stitch those images using commercial software such as Pix4D or Agisoft.

For an example dataset, download and unzip either sample dataset at https://www.micasense.com/dual-camera-sample-data into your Downloads folder, and ensure the paths below point to the correct location.

In [1]:
%load_ext autoreload
%autoreload 2

Load Images into ImageSet

In [2]:
from ipywidgets import FloatProgress, Layout
from IPython.display import display
import micasense.imageset as imageset
import micasense.capture as capture
import os, glob
import multiprocessing

panelNames = None
useDLS = True

imagePath = os.path.expanduser(os.path.join('~','Downloads','DualCam-Farm','farm_only'))
panelNames = glob.glob(os.path.join(imagePath,'IMG_0002_*.tif'))

outputPath = os.path.join(imagePath,'..','stacks')
thumbnailPath = os.path.join(outputPath, '..', 'thumbnails')

overwrite = False # Set to False to continue interrupted processing
generateThumbnails = True

# Allow this code to align both radiance and reflectance images; bu excluding
# a definition for panelNames above, radiance images will be used
# For panel images, efforts will be made to automatically extract the panel information
# but if the panel/firmware is before Altum 1.3.5, RedEdge 5.1.7 the panel reflectance
# will need to be set in the panel_reflectance_by_band variable.
# Note: radiance images will not be used to properly create NDVI/NDRE images below.
if panelNames is not None:
    panelCap = capture.Capture.from_filelist(panelNames)
else:
    panelCap = None

if panelCap is not None:
    if panelCap.panel_albedo() is not None:
        panel_reflectance_by_band = panelCap.panel_albedo()
    else:
        panel_reflectance_by_band = [0.65]*len(panelCap.images) #inexact, but quick
    panel_irradiance = panelCap.panel_irradiance(panel_reflectance_by_band)    
    img_type = "reflectance"
else:
    if useDLS:
        img_type='reflectance'
    else:
        img_type = "radiance"
In [3]:
## This progress widget is used for display of the long-running process
f = FloatProgress(min=0, max=1, layout=Layout(width='100%'), description="Loading")
display(f)
def update_f(val):
    if (val - f.value) > 0.005 or val == 1: #reduces cpu usage from updating the progressbar by 10x
        f.value=val

%time imgset = imageset.ImageSet.from_directory(imagePath, progress_callback=update_f)
update_f(1.0)
Wall time: 16.6 s
In [4]:
import math
import numpy as np
from mapboxgl.viz import *
from mapboxgl.utils import df_to_geojson, create_radius_stops, scale_between
from mapboxgl.utils import create_color_stops
import pandas as pd

data, columns = imgset.as_nested_lists()
df = pd.DataFrame.from_records(data, index='timestamp', columns=columns)

#Insert your mapbox token here
token = 'pk.eyJ1IjoibWljYXNlbnNlIiwiYSI6ImNqYWx5dWNteTJ3cWYzMnBicmZid3g2YzcifQ.Zrq9t7GYocBtBzYyT3P4sw'
color_property = 'dls-yaw'
color_property = 'altitude'
num_color_classes = 8

min_val = df[color_property].min()
max_val = df[color_property].max()

import jenkspy
breaks = jenkspy.jenks_breaks(df[color_property], nb_class=num_color_classes)

color_stops = create_color_stops(breaks,colors='YlOrRd')
geojson_data = df_to_geojson(df,columns[3:],lat='latitude',lon='longitude')

viz = CircleViz(geojson_data, access_token=token, color_property=color_property,
                color_stops=color_stops,
                center=[df['longitude'].median(),df['latitude'].median()], 
                zoom=16, height='600px',
                style='mapbox://styles/mapbox/satellite-streets-v9')
viz.show()
C:\Users\justi\Anaconda3\envs\micasense\lib\site-packages\IPython\core\display.py:701: UserWarning: Consider using IPython.display.IFrame instead
  warnings.warn("Consider using IPython.display.IFrame instead")

Define which warp method to use

For newer data sets with RigRelatives tags (images captured with RedEdge version 3.4.0 or greater with a valid calibration load, see https://support.micasense.com/hc/en-us/articles/360005428953-Updating-RedEdge-for-Pix4Dfields), we can use the RigRelatives for a simple alignment.

For sets without those tags, or sets that require a RigRelatives optimization, we can go through the Alignment.ipynb notebook and get a set of warp_matrices that we can use here to align.

In [5]:
from numpy import array
from numpy import float32

# Use the warp_matrices derived from the Alignment Tutorial for this RedEdge set without RigRelatives
warp_matrices = [array([[ 1.0020243e+00, -3.7388311e-04,  2.4971788e+01],
       [ 6.7297497e-04,  1.0005866e+00,  1.7188536e+01],
       [ 2.4259109e-06, -9.2373267e-07,  1.0000000e+00]], dtype=float32), array([[ 9.9140632e-01, -4.6332614e-05,  4.8500401e+01],
       [ 3.2340995e-05,  9.9200422e-01, -1.0915921e+01],
       [-7.3704086e-07,  5.0890253e-07,  1.0000000e+00]], dtype=float32), array([[ 1.0018263e+00, -2.1731904e-04,  5.5316315e+00],
       [ 7.2411756e-04,  1.0021795e+00,  5.8745198e+00],
       [-1.9047379e-08,  9.7758209e-07,  1.0000000e+00]], dtype=float32), array([[ 9.9152303e-01, -5.4825414e-03,  4.1536880e+01],
       [ 3.8441001e-03,  9.9495757e-01,  1.7250452e+01],
       [-3.2921032e-06, -2.4233820e-08,  1.0000000e+00]], dtype=float32), array([[ 1.0006192e+00, -3.0658240e-04, -2.5816131e-01],
       [ 7.8755329e-05,  9.9954307e-01,  2.9809377e-01],
       [ 9.1640561e-07, -1.0784843e-06,  1.0000000e+00]], dtype=float32), array([[ 9.9773926e-01, -6.3800282e-04,  5.2199936e+01],
       [-3.4246168e-03,  9.9601907e-01,  2.0550659e+01],
       [-4.6251063e-07, -4.8716843e-06,  1.0000000e+00]], dtype=float32), array([[ 9.9622118e-01,  3.1637053e-03,  3.7498917e+01],
       [-6.7951437e-03,  9.9743211e-01,  8.9517927e+00],
       [-3.6472218e-06, -2.4649705e-06,  1.0000000e+00]], dtype=float32), array([[ 9.8943901e-01,  3.7658634e-04,  9.4948044e+00],
       [-4.0384033e-03,  9.8851675e-01,  1.5366467e+01],
       [-2.4371677e-06, -3.8438825e-06,  1.0000000e+00]], dtype=float32), array([[ 9.9749213e-01,  1.6272087e-03,  4.3243721e-01],
       [-7.3282972e-05,  9.9533182e-01,  3.5523354e+01],
       [ 3.8597086e-06, -4.0187538e-07,  1.0000000e+00]], dtype=float32), array([[ 9.9992698e-01,  6.6664284e-03, -9.0784521e+00],
       [-9.0053231e-03,  9.9836856e-01,  1.5190173e+01],
       [-1.6761204e-07, -3.6131762e-06,  1.0000000e+00]], dtype=float32)]

Align images and save each capture to a layered tiff file

In [6]:
import exiftool
import datetime

use_multi_process = True # set to False for single-process saving
overwrite_existing = False # skip existing files, set to True to overwrite

## This progress widget is used for display of the long-running process
f2 = FloatProgress(min=0, max=1, layout=Layout(width='100%'), description="Saving")
display(f2)
def update_f2(val):
    f2.value=val

if not os.path.exists(outputPath):
    os.makedirs(outputPath)
if generateThumbnails and not os.path.exists(thumbnailPath):
    os.makedirs(thumbnailPath)

# Save out geojson data so we can open the image capture locations in our GIS
with open(os.path.join(outputPath,'imageSet.json'),'w') as f:
    f.write(str(geojson_data))

# If we didn't provide a panel above, irradiance set to None will cause DLS data to be used
try:
    irradiance = panel_irradiance+[0]
except NameError:
    irradiance = None

start_time = datetime.datetime.now()

# Save all captures in the imageset as aligned stacks
imgset.save_stacks(warp_matrices,
                     outputPath,
                     thumbnailPath,
                     irradiance = irradiance,
                     multiprocess=use_multi_process, 
                     overwrite=overwrite_existing, 
                     progress_callback=update_f2)

end_time = datetime.datetime.now()
update_f2(1.0)

print("Saving time: {}".format(end_time-start_time))
print("Alignment+Saving rate: {:.2f} captures per second".format(float(len(imgset.captures))/float((end_time-start_time).total_seconds())))
Saving time: 0:03:36.417433
Alignment+Saving rate: 0.67 captures per second

Extract Metadata from Captures list and save to log.csv

In [7]:
def decdeg2dms(dd):
   is_positive = dd >= 0
   dd = abs(dd)
   minutes,seconds = divmod(dd*3600,60)
   degrees,minutes = divmod(minutes,60)
   degrees = degrees if is_positive else -degrees
   return (degrees,minutes,seconds)

header = "SourceFile,\
GPSDateStamp,GPSTimeStamp,\
GPSLatitude,GpsLatitudeRef,\
GPSLongitude,GPSLongitudeRef,\
GPSAltitude,GPSAltitudeRef,\
FocalLength,\
XResolution,YResolution,ResolutionUnits\n"

lines = [header]
for capture in imgset.captures:
    #get lat,lon,alt,time
    outputFilename = capture.uuid+'.tif'
    fullOutputPath = os.path.join(outputPath, outputFilename)
    lat,lon,alt = capture.location()
    #write to csv in format:
    # IMG_0199_1.tif,"33 deg 32' 9.73"" N","111 deg 51' 1.41"" W",526 m Above Sea Level
    latdeg, latmin, latsec = decdeg2dms(lat)
    londeg, lonmin, lonsec = decdeg2dms(lon)
    latdir = 'North'
    if latdeg < 0:
        latdeg = -latdeg
        latdir = 'South'
    londir = 'East'
    if londeg < 0:
        londeg = -londeg
        londir = 'West'
    resolution = capture.images[0].focal_plane_resolution_px_per_mm

    linestr = '"{}",'.format(fullOutputPath)
    linestr += capture.utc_time().strftime("%Y:%m:%d,%H:%M:%S,")
    linestr += '"{:d} deg {:d}\' {:.2f}"" {}",{},'.format(int(latdeg),int(latmin),latsec,latdir[0],latdir)
    linestr += '"{:d} deg {:d}\' {:.2f}"" {}",{},{:.1f} m Above Sea Level,Above Sea Level,'.format(int(londeg),int(lonmin),lonsec,londir[0],londir,alt)
    linestr += '{}'.format(capture.images[0].focal_length)
    linestr += '{},{},mm'.format(resolution,resolution)
    linestr += '\n' # when writing in text mode, the write command will convert to os.linesep
    lines.append(linestr)

fullCsvPath = os.path.join(outputPath,'log.csv')
with open(fullCsvPath, 'w') as csvfile: #create CSV
    csvfile.writelines(lines)

Use Exiftool from the command line to write metadata to images

In [8]:
import subprocess

if os.environ.get('exiftoolpath') is not None:
    exiftool_cmd = os.path.normpath(os.environ.get('exiftoolpath'))
else:
    exiftool_cmd = 'exiftool'
        
cmd = '{} -csv="{}" -overwrite_original {}'.format(exiftool_cmd, fullCsvPath, outputPath)
print(cmd)
if(subprocess.check_call(cmd) == 0):
    print("Successfully updated stack metadata")
c:\exiftool\exiftool.exe -csv="C:\Users\justi\Downloads\DualCam-Farm\farm_only\..\stacks\log.csv" -overwrite_original C:\Users\justi\Downloads\DualCam-Farm\farm_only\..\stacks
Successfully updated stack metadata